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Opinion
The potential applications of unmanned aerial vehicles
(UAVs), or drones, have generated intense interest
across many fields. UAVs offer the potential to collect
detailed spatial information in real time at relatively low
cost and are being used increasingly in conservation and
ecological research. Within infectious disease epidemi-
ology and public health research, UAVs can provide
spatially and temporally accurate data critical to under-
standing the linkages between disease transmission and
environmental factors. Using UAVs avoids many of the
limitations associated with satellite data (e.g., long re-
peat times, cloud contamination, low spatial resolution).
However, the practicalities of using UAVs for field re-
search limit their use to specific applications and set-
tings. UAVs fill a niche but do not replace existing
remote-sensing methods.

Applications of UAVs
Increasing attention has been focused on the potential uses
of UAVs. UAVs have been used for various civilian purposes
ranging from law enforcement, fire fighting, and parcel
delivery to wildlife population monitoring [Handwerk, B.
(2013) Five surprising drone uses (besides Amazon deliv-
ery). National Geographic (http://news.nationalgeographic.-
com/news/2013/12/131202-drone-uav-uas-amazon-octocop-
ter-bezos-science-aircraft-unmanned-robot/)] [1,2]. UAVs
offer the potential to collect detailed geospatial information
in real time at relatively low cost. UAVs can also be an
effective method of monitoring situations too dangerous or
costly for traditional aerial surveys, such as mapping forest
fires and ice floes in the Arctic or conducting antipoaching
patrols [Dillow, C. (2014) Drones are invading the Arctic!
CNBC (http://www.cnbc.com/id/101417956)] [3]. These
advantages have led to the application of UAVs for ecological
research studies evaluating land use and cover change and
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conducting aerial surveys of large wild animals such as
dugongs, rhinoceros, and orangutans [3–7]. Additionally,
UAVs have been used in agriculture to monitor vegetation
levels, crop growth, and distribution of weeds [8,9].

There are also numerous potential applications for UAVs
in public health. UAVs can be used to locate people and
monitor human population movements of nomadic and
migrant groups to allow targeting of surveillance and public
health interventions [10]. UAVs have also been used to
facilitate access to and sample collection from remote loca-
tions. For example, a UAV was developed to allow the
transportation of test samples from remote rural clinics to
national laboratories in South Africa [11]. UAVs can also be
used for disaster management and emergency relief opera-
tions to monitor situations as well as to deliver medical
supplies to inaccessible or dangerous locations. During the
aftermath of Typhoon Haiyan in the Philippines, UAVs were
used by aid organisations to assess the extent of the typhoon
damage and plan relief measures and reconstruction [Klap-
tocz, A. (2014) Mapping the Philippines after Typhoon
Haiyan. Drone Adventures (http://www.droneadventure-
s.org/2014/05/07/mapping-the-philippines-after-typhoon-
haiyan/)]. Aid organisations have also started piloting the
use of UAVs to deliver medical supplies to areas inaccessible
by road in Haiti, the Dominican Republic, and Lesotho
[Hickey, S. (2014) Humanitarian drones to deliver medical
supplies to roadless areas. The Guardian (http://http://
www.theguardian.com/world/2014/mar/30/humanitarian-
drones-medical-supplies-no-roads-technology)].

UAVs can also be used to collect other types of environ-
mental data of public health relevance. Environmental fac-
tors such as radiation and air pollution vary spatially, with
important consequences for human health. Monitoring
equipment has been fitted to UAVs to measure levels of
environmental toxins and pollutants [12,13]. Further appli-
cations could include mapping health infrastructure, such
as water and sanitation systems and locations of health
facilities.

Within infectious disease epidemiology, UAVs provide a
new alternative to collect detailed georeferenced informa-
tion on environmental and other spatial variables
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influencing the transmission of infectious diseases. Land-
use change, for example through deforestation or agricul-
tural expansion, has been widely documented as a major
driver of infectious disease emergence and spread [14–
18]. Anthropogenic environmental changes can modify the
transmission of zoonotic and vector-borne diseases by dis-
rupting existing ecosystems and altering the geographic
spread of human populations, animal reservoirs, and vector
species [19,20]. For example, the emergence of malaria in
new areas of South America and Southeast Asia has been
associated with the clearing of tropical forests resulting in
changes in anopheline mosquito densities and contact with
people [21]. Changes in forest cover affect the life cycle and
distribution of disease vectors by altering microclimates,
availability of breeding sites, and ecological community
structures [22]. Simultaneously, deforestation is associated
with higher levels of human activity within forest environ-
ments, leading to increased exposure to forest-breeding
vectors [23]. Understanding rapidly changing patterns of
human settlement and vector distribution in this context is
vital for predicting disease risks and effectively targeting
disease-control measures.

Satellite data versus aerial data
Epidemiologists rely on accurate spatial and environmental
data to describe variations in vector-borne and zoonotic
disease risk, establish early warning systems, model disease
transmission, and estimate disease burden [24]. These data
can include detailed information on land cover, climatic
variables, and distributions of human and animal popula-
tions. Geospatial data can be obtained from a range of
sources, such as satellite-based remote sensing, aerial sur-
veys, and ground-based Global Positioning System (GPS)
surveys.

Satellite remote sensing is increasingly being used to
obtain environmental data on land cover, vegetation, soil
type, surface water, and rainfall for infectious disease re-
search [25]. Satellite data are characterised by varying
spatial, temporal, and spectral resolutions. Temporal reso-
lution relates to the frequency with which a satellite returns
to a specific location, while spectral resolution is defined by
the wavelength interval size on the electromagnetic spec-
trum and the number of intervals measured by the satellite’s
sensor. Higher spectral resolution allows image classifica-
tion or transformation (such as for vegetation indices) using
information beyond the visible range of the electromagnetic
spectrum. A new generation of sensors such as QuickBird,
IKONOS, and GeoEye (http://www.digitalglobe.com) pro-
vide imagery with very high spatial resolution (<1 m) but
are limited by relatively low temporal and spectral resolu-
tions [26]. Cloud cover, a common issue in tropical areas,
may also limit the usefulness of the data, particularly if an
area is visited infrequently [27]. Additionally, obtaining
high-resolution data can be prohibitively expensive. If data
are needed for specific time points, this may require paying a
premium to specifically task sensors to collect data for
defined areas of interest. Effective analysis and application
of satellite data also requires suitably trained personnel as
well as specialised software.

More accessible to most public health programmes,
satellite data from sensors such as Landsat (http://
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landsat.gsfc.nasa.gov/) and the Moderate Resolution Im-
aging Spectroradiometer (MODIS) (http://modis.gsfc.na-
sa.gov/) are freely available in the public domain. These
sensors produce very detailed spectral data but, compared
with sensors such as QuickBird, have much coarser spatial
resolutions (15–60 m for Landsat, 250–1000 m for
MODIS, depending on wavelength). Data from these sen-
sors are well suited to studies of infectious diseases or
disease vectors at regional, national, or subnational level
that incorporate information on either land cover or other
environmental variables (e.g., [28–36]). They are less well
suited, however, to studies that require either very de-
tailed environmental mapping or frequent monitoring of
land use and habitat.

Alternatively, due to these limitations, many ecological
studies rely on the use of aerial surveys conducted by light
aircraft to monitor land cover and conduct wildlife popula-
tion estimates. Aerial surveys are a standard method of
estimating population sizes of large animals and can also
be used to collect aerial photographs for habitat assess-
ments [37–39]. Aerial surveys can also use light-detection
and ranging (LiDAR) systems, a technology that measures
distance by the reflected light from targets illuminated by
lasers, to create high-resolution maps of land cover and
measure canopy heights [40,41]. Studies may also utilise
ground-based GPS surveys to map the distribution of
human settlements and wildlife populations. To identify
malaria cases and evaluate risk factors in forested areas of
Vietnam, GPS surveys were conducted to identify the
locations of villages and nomadic groups [42]. Both aerial
and ground-based surveys can provide highly accurate
information but are extremely resource intensive and
may not always be feasible or affordable.

The use of UAVs can supplement other remote-sensing
data used for infectious disease epidemiology. UAVs allow
the mapping of small geographical areas at user-defined
time points and spatial resolutions. UAVs can be used to
obtain high-resolution aerial photographs as well as collect
data on other variables such as elevation. Epidemiologists
can respond quickly to changing disease reports to map
areas immediately and as frequently as required. Howev-
er, despite these advantages, the use of UAVs is not always
an appropriate technology.

Case study: mapping environmental risk factors for
zoonotic malaria
Between December 2013 and May 2014, we conducted
158 flights with an UAV to collect data for an epidemiologi-
cal study. The flights were conducted in two study sites in
Sabah, Malaysia and one site in Palawan, the Philippines.
These activities were completed as part of a larger, multi-
disciplinary study to characterise biomedical, environmen-
tal, and social risk factors for human infection with the
zoonotic malarial parasite Plasmodium knowlesi (http://
malaria.lshtm.ac.uk/research/projects/malaria-research-
epidemiology-20). Maintained by long- and pig-tailed
macaques, P. knowlesi is an emerging pathogen likely to
be affected by deforestation and changing patterns of land
use resulting in increased contact between people, mosqui-
to vectors, and wildlife reservoirs [43,44]. The study
requires detailed spatial information to integrate human
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(A) (B)

Figure 1. Use of the Sensefly eBee to map land cover in Malaysia. (A) Setting up the Sensefly eBee before a flight. (B) Launching the Sensefly eBee.
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and macaque movement and vector bionomics to under-
stand the epidemiology of infection.

The commercially available Sensefly eBee UAV was
used for all mapping exercises (Sensefly, Cheseaux-Lau-
sanne, Switzerland; Figure 1). The eBee can fly for up to
50 min and uses a 16-megapixel digital camera to record
aerial images, which can be used to produce maps and
digital surface models. All UAV flight plans were pro-
grammed and monitored using eMotion2 software (Sense-
fly, Cheseaux-Lausanne, Switzerland) and post-flight
image processing was completed using Postflight Terra
3D (Pix4D SA, Lausanne, Switzerland). ArcGIS (ESRI,
Redlands, USA) was used for data analysis and generation
of 3D models (Figure 2). Previews of aerial photographs
and digital surface models were generated in real time,
while full data processing took several hours.

Within the study sites, the eBee was flown at approxi-
mately 350–400 m above the take-off point. Publicly avail-
able digital elevation data from the Advanced Spaceborne
Thermal Emission and Reflection Radiometer Global
Digital Elevation Model (ASTER GDEM; http://www.
Figure 2. 3D model of the stud
jspacesystems.or.jp/ersdac/GDEM/E/index.html) was
used to develop flight plans. Of 158 flights, 127 (80%)
generated usable data. The most common reasons for
failed flights were high winds, rain, and battery failure.
Of these flights, six (5%) were obscured by low clouds and
needed to be repeated. The average area covered by a
single flight was 124 hectares (1.24 km2) with an image
overlap of 80–90% and an average resolution of 11.22 cm
per pixel. Mapping exercises were conducted on 26 days
between December 2013 and May 2014, with repeated
flights over areas identified as having high rates of
land-use change (Figure 3). The resulting maps were
overlaid with GPS data on locations of households and
malaria cases and used to characterise land-use types and
create a spatial sampling frame for further sampling
(Figure 4) [45].

Benefits of UAV mapping

For this project, spatially and temporally detailed data on
the dynamics of land use and land cover are required
to explore interactions between environmental factors,
TRENDS in Parasitology 

y site in Sabah, Malaysia.

3

http://www.jspacesystems.or.jp/ersdac/GDEM/E/index.html
http://www.jspacesystems.or.jp/ersdac/GDEM/E/index.html


0 12.5 25 50 75 0

(A) (B)

12.5 25 50 75
Meters Meters

TRENDS in Parasitology 

Figure 3. Mapping changes to land cover at the study site in Sabah, Malaysia. (A) Study site in February 2014. (B) Same study site in May 2014 after the start of clearing to

create a rubber plantation.
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disease vectors, and human and primate hosts in the light
of increasing disease transmission. As is commonly the
case in tropical settings, it proved impossible to obtain
recent cloud-free satellite data for our field sites via the
archives of satellite-data providers. Images on Google
Earth (http://www.earth.google.com), which uses data
from the same archives, were out of date and inadequate
for characterising the study site (for example, large-scale
clearings at one study site appeared as intact forest in
Google Earth). The paucity of available satellite data and
lack of certainty in the ability to obtain data for key time
0 15 30 60 90 120
Meters

Figure 4. Macaque movements around huma
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points moving forward were the principal reasons for
electing to conduct land-cover/land-use mapping using
an UAV.

Data from UAVs share many of the characteristics of
high-resolution satellite data, although in the case of UAVs
the user has more control over the spatial resolution of the
resulting images (depending on flight altitude, images from
UAVs typically have a spatial resolution of 4–20 cm; cur-
rently, the highest spatial resolution available from com-
mercial high-resolution satellite sensors is 41 cm). As with
satellite data, UAVs can produce ‘stereo’ images that, using
Knowlesi casesKey:

Houses

Macaque movements
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standard photogrammetric tools, can be used for DEM
generation, 3D visualization, and feature extraction.

One of the main benefits of using UAVs is the ability to
obtain data in real time and to repeatedly map areas of
interest as frequently as required. In one of our sites in
Sabah, development began on clearing secondary forest to
establish a rubber plantation. As the clearing occurred
within a limited geographical area, the progress of the
clearing and the resulting land changes could be mapped
quickly and updated routinely. This ability to map changes
as they occur is critical for understanding how land-use
change affects the distribution of human populations and
disease vectors.

Depending on the size of the area to be covered and the
resolution of data needed, the costs of purchasing and
operating an UAV can compare favourably with purchas-
ing high-resolution satellite data over repeated time
points. A wide range of UAV models is available, with
low-cost options like the Conservation Drone available for
several hundred dollars and high-end, specialised drones
costing hundreds of thousands of dollars [6]. For our pur-
poses, we chose a commercially available fixed-wing UAV
costing approximately US$25 000 for the UAV and associ-
ated software. While less expensive models of UAV are
available, this UAV could be easily used without signifi-
cant training or technical knowledge, allowing multiple
members of the project team to be trained in operating the
UAV. Various models of UAV are commercially available
with different specifications. The choice of an UAV model
should depend on the financial and technical resources
available, the anticipated spatial and temporal scales of
the mapping project, and the types of data required.

Limitations of UAVs

Although UAVs represent a new source of data for epide-
miological investigations, there remain significant poten-
tial limitations in their use. Similarly to light aircraft,
small UAVs cannot fly in all weather conditions. The
ability to withstand certain weather conditions is deter-
mined by the size and specifications of the UAV used. The
model we chose could not be used during rain or with wind
speeds over 45 km/h (12 m/s). We also found that high
temperatures at our study sites (frequently in excess of
358C) could cause the UAV to overheat after multiple
continuous flights. While not as much of an issue as with
satellite data, low cloud cover can also limit the visibility of
data collected at certain times of day or in areas with poor
visibility. The variability of weather conditions can make it
difficult to plan exact flight times ahead of time and even
when conditions appear suitable, areas frequently need to
be remapped to obtain sufficient data. Some land types,
such as forest, are more difficult to map due to the difficulty
of matching overlapping images and may need to be
mapped repeatedly or at higher resolutions.

Additionally, mapping exercises using an UAV require
adequate resourcing. While small areas can be mapped
quickly, mapping larger areas can require significant
amounts of field personnel time. The amount of time
needed to map an area is highly dependent on local weath-
er conditions and the image resolution required. If higher
resolutions of data are needed, UAVs need to be flown at
lower heights and can cover shorter distances per flight.
The number of flights conducted per day may also be
constrained by the availability of electricity and ability
to recharge the UAV’s batteries. High levels of usage can
necessitate the purchase of additional equipment and
spare parts as well as lead to higher maintenance costs.
Further, processing and analysis of UAV data can be
computationally intensive, requiring computers with high
specifications that may not always be available in the field.
While data can be processed at a later date, immediate
processing of collected images allows rapid assessment of
data quality and better planning of further fieldwork.
UAVs have also been limited by the lack of multispectral
data, although recently UAVs have been modified to record
other data of interest; for example, UAVs have been fitted
with near-IR (NIR) cameras to measure the biomass of
forest areas [46,47]. Currently, the spectral resolution of
most UAVs is limited compared with available satellite
data; however, this is a rapidly developing technology and
may change in the near future.

Challenges can also be encountered while applying for
official permission for conducting UAV mapping. As the
use of UAVs is relatively uncommon, there is often no clear
regulatory framework for applying for permission. For our
research, we were required to apply for permissions from
multiple agencies, ranging from ministries of defence and
civil aviation authorities to conservation and development
councils and land-use-planning authorities. While guide-
lines are in place for traditional aerial surveys, these
guidelines were not always appropriate for relatively
short, low-altitude UAV flights. For example, some regula-
tions required the submission of detailed flight plans to
allow redirection of other aircraft within the area, despite
the differences in flight heights between a small UAV and
larger planes. It is also worth noting that insurance asso-
ciated with the use of UAVs is potentially restrictive.
Although we encountered no safety issues with using an
UAV, all project staff needed to be instructed on the safe
handling of equipment.

Concluding remarks and future perspectives
Detailed investigations of environmental factors influenc-
ing the transmission of infectious diseases are vital to
effectively target surveillance and control programmes.
UAVs present a new opportunity to obtain high-resolution,
georeferenced data in real time. These data can be used to
better understand how land-use changes affect the emer-
gence and spread of infectious diseases by monitoring the
distribution of human populations and changes to the
habitats of disease vectors and wildlife reservoirs. We
demonstrated the utility of this method by using an
UAV to obtain environmental data for an epidemiological
investigation of risk factors for zoonotic malaria.

The use of UAVs is most appropriate when detailed
maps of relatively small geographical areas are needed in
areas where high-resolution satellite data are not readily
available. UAVs may be inappropriate for large-scale data
collection due to the time and resources required to operate
them. Also, despite the modification of some UAVs to
record data at different wavelengths, UAVs do not have
the spectral resolution of most satellite data. Within
5
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smaller areas, UAVs can be used to generate high-resolu-
tion data on land cover, vegetation, and elevation and can
be used to monitor changes in habitats of vectors and
wildlife reservoirs on a fine spatial scale. Additionally,
UAVs can provide a valuable alternative to other data
sources when data are needed either in real time or at
very frequent time points.
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